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Gravity-capillary waves with edge constraints 
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This paper presents a theoretical and experimental investigation into a novel class of 
water-wave motions in narrow open channels. The distinctive condition on these 
motions is that the lines of contact between the free surface and the sides of the channel 
are fixed, which condition bears crucially on the hydrodynamic effects of surface 
tension. Most of the account concerns travelling waves in channels of rectangular 
cross-section that are exactly brimful, but the relevance of this prototype to other, 
more usual situations is explained with reference to the phenomenon of contact-angle 
hysteresis. 

In  $ 2 a linearized theory is developed which poses an eigenvalue problem of unusual 
kind. Unlike the familiar and much simpler problem corresponding to mobile lines of 
contact a t  which the free surface remains horizontal, the new problem has no explicit 
solution and the edge conditions are not automatically compatible with the kinematic 
conditions at the solid boundaries. Treatment by functional analytic methods is 
necessary to verify that solutions exist having physically appropriate properties, but 
this approach gives a final bonus in securing comparatively easy estimates for some of 
these properties. A variational characterization of the eigenvalues is used to settle 
questions of existence and the ordering of possible wave modes, and finally to establish 
approximate formulae relating wavelength to frequency. 

In  $ 3  experiments are reported which were performed with clean water filling three 
channels made of Perspex. Over continuous ranges of frequency, delimited so that only 
the fundamental progressive-wave mode was generated, wavelengths were measured 
by an electronic technique. The measurements agree well with the theoretical predic- 
tions, diverging markedly from behaviour to be expected in the absence of edge 
constraints. 

Appendix A outlines a supplementary theoretical argument proving that the first 
eigenvalue of the problem treated in $ 2 is always simple. Appendix B reviews three 
generalizations of the theory. 

1. Introduction 
The class of wave motions that is the subject of this paper has apparently received 

little attention so far. A heavy liquid with uniform surface tension is contained in a 
horizontal open channel, and the novel feature to be investigated is that the lines of 
contact between the free surface and the sides of the channel are fixed. Waves are 
transmitted along the channel, disturbing the liquid from a state of rest, and the 
relationship between their frequency and wavelength depends on the edge constraints. 
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It may at once be appreciated that the stiffening effect of surface tension is magnified 
by these constraints, so that speeds of propagation are generally larger than they would 
be if the free surface were able to move up and down the sides of the channel. 

A linearized theory of progressive waves in the new class is presented in $2. It is 
developed for the particular case of a brimful channel with rectangular cross-section, 
and the use of a variational principle leads to explicit estimates of wave properties in 
this case. The theory is considerably harder than the standard theory for waves free 
from edge constraints, and explicit solutions are unobtainable. Generalizations of the 
theory applying to channels of arbitrary cross-section, to cases where the undisturbed 
free surface is not flat and to standing waves in closed basins are summarized in an 
appendix. Other theoretical aspects, in particular concerning the nonlinear problem 
for progressive waves, will be reported elsewhere. 

Experimental measurements are reported in § 3 which agree well with the predictions 
of the theory. The experiments were designed to ensure fixed contact lines, and so they 
are not immediately comparable with other, more familiar situations where gravity- 
capillary waves are observable. A wider bearing of the present investigation may be 
indicated, however, by the following notes about observations that were preliminary 
to those detailed in 5 3. 

The investigation was in fact suggested by consideration of certain discrepancies 
encountered in the measurement of wave propagation on clean water in a Perspex 
channel of width 100 mm, five to twenty times the widths of the channels used for the 
present experiments. At the vertical sides of the channel, the water surface had menisci 
of height about 2 mm, leaving ample freeboard above. Measured values of phase speed 
at various frequencies were found consistently to be somewhat greater than those 
calculated according to the standard linearized theory of long-crested waves (as will be 
recalled in $3.2 for purposes of comparison); and careful measurements of surface 
tension, together with measurements of wave attenuation, indicated that this effect 
was unlikely to have been caused by surface contamination. 

Amore likelyreason appeared to be associated with the contact zones a t  the sides of 
the channel. In  general, for surface-clean water placed in a Perspex vessel that has been 
thoroughly cleaned and is free of scratches, the line of contact between the free surface 
of the water and the Perspex may be observed to remain stationary when the surface 
is gently agitated. There are thus temporal variations in the contact angle, being 
consistent with the hysteresis of contact angle that is found to occur between water and 
Perspex, as in fact occurs to a measurable extent between most liquids and all but a few 
painstakingly prepared solid surfaces (for typical values, see Stepanov, Volyak & 
Tarlakov 1977). The term hysteresis is otherwise used to refer to the difference in the 
observed contact angle accordingly as the water is advancing or receding across the 
solid surface, but here the term refers rather to the difference in the limiting angles that 
the water surface makes with a static contact line under forces tending to move it 
respectively forward or backward. We note that, if there were no such hysteresis, 
raindrops would not stick to a windowpane. 

It may accordingly be expected that, provided the wave amplitude is small enough 
for the contact angle to remain between these limiting values, water waves will not 
displace the contact line on a Perspex wall. In  a wide channel with Perspex walls such 
as that mentioned above, the effects of fixed contact lines are largely confined to 
regions near the walls, there distorting the planform of progressive waves that appear 
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more or less long-crested in the central part of the span. Although wave speeds may be 
appreciably affected, as we noted above, the effects in question are then hardly more 
than residual complications of a two-dimensional (i.e. spanwise uniform) wave system. 
In a sufficiently narrow channel, in the other hand, these effects become predominant, 
and wave speeds are unmistakably larger than those of corresponding two-dimensional 
waves. 

The experiments reported in Q 3 were made with three Perspex channels of widths 
roughly 4,lO and 20 mm. To simulate the theoretical model studied in Q 2, each channel 
was filled precisely to the level of the horizontal top surfaces of the Perspex walls. The 
contact lines were thus located along the sharp edges of right-angled corners, where, 
as the net outcome of microscopic processes, the angle spanned by contact hysteresis 
was effectively increased by 90" above the value for a plane solid surface. It was found 
that quite large waves could be generated in the water without dislodgement of the 
contact lines, which certainly remained fixed under the action of the small-amplitude 
waves measured in the main experiments. 

The problem here investigated may be likened to various other ' hydroelastic ' 
problems where a surface with known bending stiffness is subject to hydrodynamic 
loading. We are aware of few previous studies that are directly relevant, although 
Walbridge & Woodward (1  970) reported some experimental observations on pro- 
gressive waves in narrow brimful channels. They found that 'the meniscus was 
irregular at the edges ', a complication avoided in our experiments by the use of care- 
fully cleaned water and Perspex, and their measurements of wavelength as a function 
of channel width for a fixed frequency encountered large variations on repetition from 
day to day. An empirical formula roughly correlating the experimental results was 
proposed by them, but it is in obvious respects inconsistent with the hydrodynamical 
problem. The present theoretical predictions also fall within the range of their experi- 
mental results. We have seen some theoretical work comparable with ours in an un- 
published M.Sc. thesis by R. J. Astley (1969), who correctly formulated the linearized 
problem for two-dimensional standing waves in a liquid filling a deep rectangular 
trough and having a free surface with fixed edges. His method of approximate solution 
appears inexpedient, however, in that it entails a somewhat elaborate and slowly 
convergent iteration. The present treatment proceeds on quite different lines. 

2. Theory 
The theoretical model is illustrated in figure 1. A liquid completely fills a straight 

horizontal open channel of rectangular cross-section with uniform breadth & and 
depth h. When a t  rest, the free surface of the liquid is everywhere horizontal, making 
contact with the side-walls at sharp edges. Cartesian axes (x, y, z )  are taken with origin 
in the free surface a t  one side-wall, with y upwards and z along the channel which is 
unbounded lengthwise. The liquid is assumed to be inviscid and incompressible, and 
to have a constant surface tension denoted by py, where p is the density. The propaga- 
tion of free waves along the channel is to be investigated, subject to the condition that 
contact between the free surface and side-walls is fixed in the horizontal lines 

(2, y) = (0,O) and (x, y) = (&, 0).  

9-2 
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FIGURE 1. Cross-section of channel. 

2.1. Equations of motion 

Considering the possibility of a sinusoidal travelling wave, we suppose the equation of 
the perturbed free surface to have the form 

with 

y = q(2,  z, t )  = ef@) ei(ut-az) 

f(0) = 0 and f(b) = 0. 

Here the amplitude e, frequency o and wavenumber a are constants, and Is1 is assumed 
to be small enough to justify linearized approximations to the boundary conditions 
applying at the free surface. Having supposedly been started from rest by conservative 
forces, the motion in the liquid is therefore irrotational, and an appropriate form for its 
velocity potential is 4 = iws@(x, y) ei(ut-az). 

Since the liquid is incompressible, 4 is a harmonic function of ( z , y , z ) .  Hence the 

( 3 )  
function @(x,  y) satisfies 

@,+@,,-a2Q, = 0 

in the cross-sectional domain Q, whose closure a can be taken to be [0, b] x [ - h, 01 for 
the linearized theory. 

The boundary conditions on @ are as follows. For the normal component of velocity 
to vanish everywhere on the bottom and side-walls, it  is required that 

@JZ, -h )  = 0 V 2 € [ O , b ] ,  (4) 

@,(O,y) = 0, @,(b,y) = 0 V ? / E [ - - - , O l .  (6) 

The linearized kinematical condition at the free surface is 

qt = 4J2, 092, t ) ,  

which requires that @&, 0 )  = f(z) v 2 E [O, b] .  

The linearized approximation to the total curvature of the free surface is qxz + qzz, so 
that the pressure in the liquid just beneath the surface is approximately -py(q= + qSJ. 
Hence the linearized dynamical condition is 

97 - Y ( 7 Z Z  + 72s) + 4 t ( X ,  0, z, t )  = 0 

(cf. Lamb 1932, $227) ,  requiring that 

(g+ya2)f(x)-yf”(x)  = w2@(x ,0 )  V x ~ [ O , b l .  
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We define an operator B such that a function f given on [0, b] is transformed into 
Bf = @(z, 0), where @(x, y) is the unique solution of the Neumann problem comprised 
by (3) and the boundary conditions (4), (5) and (6). Thus (7a)  can be rewritten 

(9 + P2)f (4 - Yfn(4 = 02Bf (x). ( 7 b )  

This completes the specifications of the dynamical problem, and we proceed to 
investigate the possible values of w corresponding to given real values of a. 

2.2. Simplijied problem 

When the edge conditions (2) are relaxed, the problem has simple solutions which are 
well known. These are now recalled in order to introduce several facts that will be 
needed in the treatment of the original problem. Using tildes to connote the simplified 
problem and writing p = r / b ,  we observe that if the function f(x) in (1) is one of 

f,= cos(mpx) (m=0,1 ,2 ,  ...), (8) 

then the unique solution of (3) satisfying (4), (5) and (6) is 

- cos (mpz) Gosh k,( y + h) 
k, sinh k, h 9 

@, = (9) 

where k, = (a2+m2/32)*. Hence, to satisfy the remaining boundary condition (7a) ,  
G2 must have the value 

13: = (k,g+k;y)tanhk,h. (10) 

In  each of the possible wave modes corresponding to m = 0,1,2, . . . , the moving free 
surface remains normal to the side-walls, and m = 0 recovers the case of a two-dimen- 
sional wave motion [cf. Lamb 1932, p. 463, equation (a)]. For each real value of a, the 
frequencies G,(a) according to (10) satisfy 0 6 6g(a) < 6f(a) < &:(a) < ..., and their 
positive values are monotonic increasing with 1.1. The positive phase velocity 

E,, = G0/a 

and group velocity dGo/da = Eo+adEo/da have the limit (gh)* as a+O,  and are 
asymptotic to (ay)* and #(ay)* as a+m. If h < (3y/g)*, which value is about 4.7 mm 
for clean water, E0(a) is monotonic increasing with 1.1. If h > (3y/g)) ,  Eo(a) has a 
minimum a t  a non-zero value of lal, and accordingly the group velocity is less than Eo 
for positive 1.1 less than the optimum. For every m 2 l , G & ( a )  has a positive limit as 
a + 0, applying to the standing waves independent of z that are possible in these modes. 
Each of the phase velocities E,(a) has a minimum at a respective non-zero value of ) a / .  

2.3. Properties of the operator B 
For use later, it  will be helpful to note the following facts about the Neumann problem 
comprised by (3)-(6). When the function f(x) in (6) has the form (8), the problem is 
immediately soluble, determining the function @(z, 0) = Bf. Thus, according to the 
solution (9), we have that Bf, = pmfm, where 

p, = kgl coth km h. (11) 
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The operator B is linear, and consequently, for an arbitrary function expressible by a 
half-range cosine series on [0, b]  that is, for 

we have that 

m 

m=O 

m 

m= 0 

u(x) = I: A,cosmpx, 

Bu(x) = 2 ,urn Am cos mpx. 

It is now required to define suitable domains and co-domains for B.  
For the real space L2(0, b ) ,  denote the inner product by 

(u, v)() = i; jouvdx. i t  

With respect to any given non-negative integer s, we consider the space of real, even, 
periodic functions with period 2b that belong to L2(0, b )  and have derivatives D u  
also in L2 for 1 < s. With the inner product 

this is a Hilbert space, and according to Parseval's equality an alternative-expression 
for the norm llulls = [(u,  u)J* is 

where eo = 4, em = 1 for m 2 1, and the Am = 2c.,(u, cosmpx), are the coefficients of 
the Fourier cosine series that represents u. Related to this space and particularly 
needed for what follows, @ is defined to be the space of (equivalence classes of) 
functions on [0, b] representable as half-range cosine series such that the infinite sum in 
(15) converges. With the norm (15) and corresponding inner product, B5 is also a 
Hilbert space; and if its elements, defined on [0 ,  b ] ,  are arbitrarily extended to the 
whole of R as even periodic functions, in this guise they recover those of the first space 
and admit the alternative inner product ( 1 4 ) .  By means of (15), the definition of @ 
can evidently be extended to cases where the real numbers is other than a non-negative 
integer, and this generalization will be needed particularly in appendix B. An im- 
portant fact to be used in what follows is that a5 c CNIO, b]  if s > N + 8 ( N  = 0,1,2,  . . .). 
In  other words, the attribution u E with s > N + 8 implies that the equivalence 
class of u contains a function whose Nth derivative is a continuous function on [0 ,  b]  
(Adams 1975, p. 97). 

The positive numbers p, (m = 0,1 ,2 ,  ...), which are the (simple) eigenvalues of B,  
are monotonic decreasing with m and ,urn - m-l as m-tco. Hence ( 1 4 )  shows that if 
u E @, then Bu E a.' for s' < s + 1.  In  fact the range of B from @ is @+l, and B is 
injective since no eigenvalue is zero. Thus B:@-+@+l  is a bijection. 

It is also noteworthy that B is self-adjoint @+@, a fact made plain by Parseval's 
equality referred to the explicit representation (13) of B. Applied to the Neumann 
problem whereby B was originally defined, Green's theorem shows that 
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and we may now appreciate that this integral exists whenever f ERS with s 2 - + 
(cf. below and appendix B). 

Finally, we note that B is a positive operator in the sense that, if u 2 0 on [0 ,  b ] ,  then 
Bu has the same property. This fact may be demonstrated by the maximum principle 
that applies to the elliptic differential equation (3), showing that a negative infimum 
of the boundary values of @ is incompatible with non-negative values of the (outward) 
normal derivative (cf. Protter & Weinberger 1967, chap. 2 , s  3). In  the present context, 
however, the following demonstration is more instructive. 

In the sense of distributions, the solution @(x, y) of the Neumann problem (3)-(6) 
can be immediately inferred to exist as an element of the Sobolev space H1(!2), having 
a trace on aD that belongs to H8(3!2) (see Lions & Magenes 1968, chap. 1, $8) .  The 
solution is specified by 

(17) W@,f) = min P(E,f), 
&HVW 

where 

is defined as a coercive, lower semi-continuous functional on H1(!2), therefore achieving 
the minimum (17), provided that f E H - ~ ( O ,  b )  (cf. Lions & Magenes, chap. 2, $9) .  Since 
the solution thus satisfies 

J* (Ez 9z + 6, @, + aY@) dxdy  - $@, 0)f dx  = 0 1: 
for every CE H1(S2), it is evidently unique, and with C = @ this equality shows that 

which according to (16) is negative unless f is null. Hence, iff is (a.e.) non-negative 
and not null, then @(x, 0 )  = Bf must have positive values on some part of the support 
off whose measure is positive. Supposing that @ is not non-negative a.e. in !2 u an, we 
have I@I distinct from @ and also an element of H1(sZ) (cf. Stampacchia 1963). More- 
over, the component of .F quadratic in @ is the same for \ @ I. We therefore have 

W(@l,f 1 < S(@,.f), 
which contradicts the previous conclusion that @ is the unique minimizer of 9. Thus 
it is proved that Bf 2 0 iff 3 0. 

An obvious extension of the argument shows that iff 2 0 (a.e.), then Bf is positive 
where f is positive. It may be shown otherwise that Bf is in fact positive throughout 
[0, b]  iff is not null and f 2 0 (see appendix A), but this result will not be needed at 
present. 

2.4. Eigenvalue problem including edge conditions 

When the conditions (2) are imposed, the problem represented by equation ( 7 b )  
becomes more complicated, and care is needed to verify that eigensolutions f exist. 
We shall take advantage of what was shown above about Bas an operator in the spaces 
p, but we shall also need to consider spaces whose elements defined on [0, b] are 
representable as half-range sine series with corresponding rates of convergence. 

Let 8l denote the linear manifold in R1 consisting of those elements whose equiva- 
lent continuous functions u(x)  satisfy u(0) = u(b)  = 0. The respective sequences of 
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cosine coefficients {A,}, which plainly belong to Pin view of (15) with s = 1, accordingly 

satisfy 00 

9,(~) = 2 A ,  = 0, 
m=O 

and 
W 

9,(u) = I: ( -  l)mA, = 0. 
m=O 

Since 9, and Z2 are defined as linear functionals over I?,, it follows that I?, is a sub- 
space of 8 1  and consequently contains a countable orthogonal basis of its own. Such a 
basis is evidently {sinnpx} (n = 1,2,3, . . .). Besides (15), a third alternative expression 
for the norm in @ is therefore 

t 
IlUlll = { 5 (1 + n W )  2 (19) 

where a, = 2(u, sinnpx),, and the elements of 8, are the same on [0, b] as those of the 
space of odd periodic functions having inner product (14) with s = 1. Spaces As with 
other values of the index s can similarly be defined. Note that 8, is a proper subspace 
of for s = 1,2, ..., but the @ 
are not included in any narrower space with integer s. This fact is shown by the 
example of the function u = 1 common to all the spaces p, although it belongs to 
I28 only if s < 4. 

n= 1 

but 8 0  is identical with DO. Note also that @ c 

Now, a weak solution of (7 b) is defined to be an element f E 8, such that 

is satisfied for every ~ € 8 ~ .  This equality can be rewritten in the form 

~{P(u,f),+Q(u,f)o} = @,Bf 1 V U € f i 1  (20b) 

with A = 1/02, 

P = rnax{yp2, (g+ya2)} > 0, 

Q = JyP2--(g+ya,)l 2 0; 

and it is evidently satisfied iff is a solution of (7b) that is twice continuously differ- 
entiable on 10, b[ and satisfies (2). The existence of weak solutions corresponding to 
eigenvalues A, > A, > A, 2 ... > 0 (each, after A,, repeated a number of times equal 
to its multiplicity) will first be verified, and then they will be shown to have sufficient 
regularity to satisfy (7 b) pointwise. 

First, the fact that the eigenvalues must all be real and positive follows immediately 
from (20b). Supposing 1/02 to be complex, generalizing to be a complex space and 
then taking u in (20b) to be the complex conjugate off, one arrives at  a contradiction. 
With u = f (real) in (20b), positivity of the eigenvalues is shown by (16). 

Existence of the first eigensolution. It will appear that a characterization of the first 
eigenvalue is A, = maxP(u), 

ushi 

where F ( u )  = (u, Bu), and A, is the subset of 8 l  comprised by those elements satis- 
fying 

(22) G(u)  = PlIuIl2,+ QIlulD = 1. 
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Since 8l c 8l, we know from the discussion in $2.3 that B(&) c B2 c C1[O, b] ,  
which confirms that the quadratic functional F is defined over &. Furthermore, 
although B is clearly not a self-adjoint operator from I?l into itself (i.e., if UE&, the 
continuous function equivalent to Bu is generally not zero at x = 0, b) ,  we nevertheless 

(23) 
have that 

It follows that the equality(20b) isnecessaryfor any f E A, to realize a stationary value 
of F subject to (22). The existence of a weak solution flERl is therefore assured by 
showing that the maximum (21) is achieved. 

The argument proceeds on standard lines. Exemplifying a property shared by every 
symmetric bilinear functional over a Hilbert space, the one in (23) has the representa- 

(u, Bv), = (w, Bu), V U ,  v €A1. 

tion 
(u, Bv), = (u, 9w), v u, w E 8 1 ,  

where 9? is a self-adjoint operator I?l -+A1 which is the gradient of +F in I?l .  Although 
we yet have no explicit representation of B as an operation on sine series, there is 
another, crucial property of @ that can at  once be guaranteed in abstract. This operator 
is evidently expressible in the form 

a=  A o B ,  

where A (f-P-'D')-' 

is just the symmetric operator determined in the spaces 8, by (u, v), = (u, Aw),,: 

thus, if m 

v = a,sinn@x, (24) 
n= 1 

then 
W 

Av = C (l+n2)-lansinnpx. 
n= 1 

Plainly, A is a bijection 8 S - t  As+2 for arbitrary s. On the other hand, we already know 
that B(A1) c B2, and G2 c 8 0 .  Hence we conclude that B(8') c B2, which space is 
compactly embedded in I?'. This means that 9 is a completely continuous operator 
G1 -+ B1, and consequently the functional F is continuous with respect to weak con- 
vergence in 81. In  other words, if {uN) is a sequence in 8, converging weakly to some 
element f€B1 (recall that in a Hilbert space, every bounded sequence contains a 
subsequence with this property), then 

lim F ( u N )  = F ( f ) .  

Let (u N }  be specifically a sequence from A, taking F to its supremum over A, as 
N-tco .  The functional G(u) introduced in (22), whose gradient in 8, is 2(PI+QA) 
with P > 0 and Q 0, is an equivalent norm for 81, being thus strongly coercive. 
The sequence in question is consequently bounded, so that it or a subsequence has a 
weak limit fl. The weak continuity of F therefore implies that 

N-CO 

SUPP(U) = F(f1)t (25) 
*A1 

and, since F can have positive values [cf. (16)],fi is evidently not zero. On the other 
hand, the functional G(u) is, like the norm, lower semi-continuous with respect to weak 
convergence in I?,, so that 

G(f1) = Pllfill2+Qllflll~ G 1. (26) 
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If inequality were the case in (26)) a number c > I could be chosen to  make cf, E A,, but 
then the fact that F(cf)  = c2F(fl) > F( fJ would contradict (25). We conclude there- 
fore that flc A, and the maximum (21) is realized by f,. Thus the proof that the prob- 
lem has a weak solution corresponding to the eigenvalue A, is complete. 

The positivity of the operator B as explained at  the end of $2.3 indicates that the 
continuous function equivalent to f, is non-negative; for if it were not, we would have 
I f l \  EA, yet F(J f i l )  F( f,) (cf. Stampacchia 1963). It will be shown in appendix A 
that f, > 0 on 10, b[,  and that the eigenvalue A, = 1 / w ;  is simple. 

Existence of further eigensolutions. The second eigenvalue may be characterized as 

A, = maxP(u), 
U=S& 

where A, is the intersection of A, with the subspace of B1 defined by 

P ( U , f , ) l +  &(U,fl)O = 0. 

Existence can be proved by repeating the previous argument with regard to this 
subspace. In  general, the kth eigenvalue is given as the maximum of F achieved on 
A,, which is the intersection of A, and the subspace defined by 

p ( u , f i ) l + & ( u 7 f ( ) 0  = O ,  = ', 2, ' * * )  (k- '1) 

where fi is the eigensolution corresponding to the ith eigenvalue. Alternatively, the 
eigenvalues less than the first may be characterized by the minimax principle (Dun- 
ford & Schwartz 1963, p. 908). 

Regularity. We have shown that Bf, E g2, which implies it to be equivalent to an 
even function that is continuously differentiable on [O ,  b].  Equation (7 b )  is now recon- 
sidered in this light. Being complemented by the conditions ( 2 ) )  the differential 
operator on the left-hand side can be inverted, thus 

f, = w;[(g + ya2) I - yD21-10 Bf,; (27) 

and it is well known that, like A introduced earlier, this inverse can be represented as an 
integral operator whose kernel is piecewise continuously differentiable on 

(see appendix A). Hence an integration by parts shows that this operator is continuous 
GI+ Cz. It follows that f, E C2 and therefore ( 7 )  is satisfied pointwise. 

Note that, although f, vanishes a t  x = 0, b, its second derivative does not. Thus the 
attribution f1EB2 established in the course of the existence theory is the highest 
possible in the spacesBS for integer s. Sincef'is discontinuous a t  x = 0, b iff is extended 
as an equivalent even function, the attribution f, E 8 1  is the highest in the spaces p. 
The half-range sine series representing f,, the leading terms of which may be found by 
the Rayleigh-Ritz method or otherwise, therefore converges more rapidly than the 
half-range cosine series (in fact, for some 6 > 0, the sine coefficients a, = O(n-*-&) 
and the cosine coefficients A ,  = O(m-*-6) as n, m-+co). All these conclusions apply 
also to the higher eigensolutions fk. 

Explicit representation of B :  fi1-+Bo. This is needed if, in applying the Rayleigh- 
Ritz method to obtain close estimates of eigenvalues, advantage is to be taken of the 
comparatively rapid convergence of the odd Fourier series for solutions. Supposing ~ ( x )  
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to be expressible by the series (24), we find the coefficients A ,  = 2em(u, cosm/3x), of 
the corresponding half-range cosine series. A simple calculation shows that 

where @,, = n/(n2-m2) if n + m  is odd, 

= 0 if n + m  is even. 

It is similarly found that 
4 "  

nm=O 
(29) a, = 2(u, sinnpx), = - @,, A,. 

The representation of B as an operation on functions expressible as half-range sine 
series can now be deduced from (13), (28) and (29). We obtain 

00 

Bu = C b,sinnpx 
n= 1 

with 

Hence the quadratic functional B(u) = (u, Bu), introduced in (21) is representable in 
the form 

In view of (20) and (Zl), the lowest possible value of w2 for a given a2 is 

w: = min {G(u)/B(u)}, (32) 

(33) 
1 "  

= - 2n= Z 1 {(g+ya2)+yn2p2)a2,. 

The sequences {a,} competing for the minimum in (32) are the half-range sine coeffi- 
cients for elements of 8 l ,  and (19) shows them to be just those sequences for which the 
series (33) converges. 

We have already seen that Bu E l?O if u E fil, or even if merely u E BO. This implies 
that the sequence (b,) given by (30) belong to 1' if (a,) does so, and that the triple series 
(31) then converges. 

Symmetry properties of eigensolutions. Suppose that u(x) is not null but its half-range 
sine coefficients a, = 0 for n even (respectively odd). In  this case, (28 )  shows that 
Am = 0 for m odd (respectively even), and (30) shows that bn = 0 for n even (respec- 
tively odd). Thus, if u is either an even or odd function of x - $b (i.e. is symmetric or 
antisymmetric about the centre-line of the channel), its image Bu has the same 
respective property. Symmetry preservation in this sense is evidently provided also 
by the differential operator on the left-hand of (7), and by its inverse appearing in (27). 
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It follows that every eigensolution fk is either symmetric or antisymmetric about the 
centre-line, having a half-range sine expansion with only odd-order or only even-order 
terms. Because it is a non-negative continuous function, fi must therefore be in the first 
category of symmetry. 

2.5. Estimates for eigenvalues 
Rigorous lower bounds for A, can be obtained from (21) by substituting appropriate 
functions which satisfy the edge conditions (2). This is the same as estimating 0: from 
above by use of (32). According to Rayleigh’s principle, good approximations may be 
made quite simply by this means. 

( A )  As a first try, let us take u = sinpx, which simulates the first eigensolution in 
being positive on 10, b[ and symmetric about x = i b .  Then (33) gives immediately 

G(u) = H9 + y(a2 +a”,>, 
and the expression (31) reduces to 

4 cothah * 1 
> -  - 
nz ( a + 2,fil (1  - 4m2)2 (a2 + 4m2P2)i 

since coth k2,n h > 1.  The replacement of coth k,, h by 1 for m 2 1 has negligible effect 
in the case h/b > 1, which applies to our experimental results. We also have 

and 
m I - 

= g-21n2 = 0.1137, m=lm(4m2- c 1)2  

= 0.01396. 
1 “  1 - z  8,,lm3(4m2- 1)2 

4 cothah 0.1137 0 . 0 1 3 9 6 ~ ~  
n2 a ( +-- P 

Hence P(u) > - - 135) 

and this is a useful estimate provided h > b and a2/lp2 is substantially smaller than 8. 
It follows according to (32) that - .  

n24g + y(a2 + P”,) 
8{~0thah+ 0-1137(c~/P)- 0*01396(a/P)3)’ 

w? < 

and the right-hand side of (36) can be expected to give a fair approximation to w: 
particularly when h > b and a/P is small. 

We note that €or alp small the dispersive properties of the first wave mode according 
to the estimate (36) are akin to those of the first mode for the simplified problem dis- 
cussed in $2.2. Thus @:(a) is comparable with &:(a). The wave with frequency wI 
behaves in effect as if g in the simplified problem were replaced by g‘ = &n2(g + yPz), 
and in the long-wave limit a + 0 its phase velocity and group velocity equal (g’h)*. For 
water with y = 72 mN/m, we have g’ > 49 if b c 5-7 mm approximately, so that in this 
case the effect of the edge constraints more than doubles the long-wave velocity of the 
fundamental mode. 
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0 &C 

FIGURE 2. Dispersion relation for the second wave mode, illustrating the minimum 
of phase and group velocities. 

(B)  We may presume that the second eigensolution f2 is antisymmetric about 
x = i b .  Hence an estimate for 0: is obtained by considering the test function sin 2px, 
which obviously satisfies the requisite condition of orthogonality with the symmetric 
eigensolution fi. On the replacement of coth k, h > 1 by 1 in the estimate for F ,  it is 
thus established that 

w i  < ( ~ ~ 1 6 4 ~ )  (a2 + p2)& (g + y(a2 + 4p2)), (37) 

where 
00 1 

I 

L =  c. = 0.125. 
m= 1 (4m2 - 4m - 3)2 (2m - 1) 

Unlike w;(a)  and in keeping with the estimate (37), @:(a) clearly must have a positive 
limit as a+O; for w,(O) can be interpreted as the lowest possible frequency of two- 
dimensional standing waves that are independent of the co-ordinate x along the 
channel. For such waves the condition 

P b  

is required by conservation of the liquid mass, thus excludingf, as a possible mode but 
being automatically satisfied when f is antisymmetric about x = i b .  Since the phase 
velocity c2 = w 2 / a  is unbounded as a + 0, it  may be expected to have a minimum a t  
some positive value of lal, say a,. This result is illustrated in figure 2, which is drawn 
from (37). The figure makes plain that the group velocity dw,/da is less than c2 for 
0 < a < a, and greater for a > a,. A physical implication thus provided, recalling one 
that is well known regarding the simplified problem of 92.2, is that localized applied- 
force systems moving along the channel at  constant speed U may generate steadily 
lengthening wave-trains in the second mode if U > c2(ac) ,  but cannot do so if 
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Waves with a > ac will appear ahead since their group velocity exceeds c,(a) = U and 
waves with 0 c a < ac will appear behind. Being an absolute minimum with respect 
to a, the (positive) frequency o,(O) is physically significant as the ‘cut-off’ frequency 
for the second mode. When excited a t  any lower frequency, waves in this mode will not 
propagate along the channel. 

The preceding considerations apply also to the third mode, which may be presumed 
to  have the same form of symmetry as the first. The condition (38) is satisfied by f3 in 
the limit a+ 0, being presented analytically as the limiting form of the orthogonality 
condition that holds betweenf, and f 3  for non-zero a. The latter is equivalent to 
(f,, Bf3)o = 0, which is the same as 

where A42 and Ai2 are the half-range cosine coefficients for f, and f 3  .We have 

po(a) = a-lcothah = O(l /a2h)  as a+O, 

and ,uZm(O)  = (coth2m/3)/2m/3 for m 2 1. Since Ad1) is not zero, (39) implies that 
Ad3) = 0 in the limit a+ 0, and this condition is the same as (38) for f3. 

It has a particular bearing on the experiments to estimate the cut-off frequency 
w3(0),  which may be interpreted as the lowest possible frequency of two-dimensional 
standing waves that are symmetric about x = i b .  Writing Fo and Go for the functionals 
(31) and (33) in the case a = 0, we have that w:(O) is the minimum of Go(u)/Fo(u), where 
u ranges over those elements of 8, that are symmetric and satisfy (38). An estimate 
from above is thus given by taking 

u = & sin /3x - sin 3Px, 

which satisfies all the conditions; and according to Rayleigh’s principle it may be 
expected that this estimate too is fairly close. We obtain immediately 

Go@) = Q(59+ 41YP2), 
and after some reduction 

= 0.076448b. 

Here inequality arises only through replacing coth 2mPh by 1, which makes negligible 
difference in respect of our experimental values. It follows that 

wg(0) < 7*267(g/b) + 588.1(y/b3). (40) 

(C) The test function sinpx chosen in ( A )  above is unlike the eigensolution f, in that 
its second derivative vanishes a t  x = 0, b. To examine the sensitivity of the estimate to  
this feature, let us try 

t.4 = (x/b)W- (x/b)) (414 

1 1 cos2m/3x 
6 7r2rn,1 m2 ’ z =- - -  
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for which un is a constant on 10, b[  but, according to the representation (41 b )  of u as a 
half-range cosine series, u" does not exist at x = 0, b (i.e. uf has a saltus at each of these 
points). From (410,) we readily obtain 

G(u)  = &(s + ?a2) + 8Y/b2, 

and from (41b), making use of (13), 

P 1 Pzm P(u) = -o+- 2 - 4 '  
36 

The use again of (34) now gives 

cothah 1 I a2 1 
P(u) > - 

36a + (2 I 2 - @zl m7) ' 
in which the sums of the two infinite series are respectively 

g(5) = 1.0369 and y(7) = 1.0083. 

For small alp, this estimate is slightly less, and thus better, than (36) .  Comparing 
coefficients in the respective numerators and recalling that ,8 = n / b ,  we find 

2 < n2/8  = 1.234 and 12 < n4/8 = 12.18. 

The closeness of these figures, notwithstanding the gross difference in the curvature 
properties of the respective test functions around x = 0, b, is reason for confidence in 
the estimates. 
(D) It was explained at the end of 5 2.4 that the half-range sine series for fi consists 

of odd-order terms only. Accordingly, to estimate w; by the Rayleigh-Ritz method, a 
truncated series of this form may be substituted in the quotient on the right-hand side 
of (32) and a minimum found by varying the coefficients of the series. Here we take 
only two terms; and since the minimum is plainly not achieved when the coefficient 
of the leading term sinpx is zero, we may consider 

uE = sinpx -+- R sin 3px, 

finding the minimum with respect to the number R. Then (33) gives 

and (31) gives 
G@R) = B[s+y(a2+P2)+{9+Y(a2+9r62)}R21, 

A lower bound for the sum of the terms independent of R in (43) is provided by (35). 
A lower bound for the sum of the terms in R2 is similarly found to be 

] R2. 
4 cothah 0.4570 0.04793a2 - -  

B3 ( +-- 
n2 9a P 

The first two terms in R are 

(44) 
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FIGURE 3. Dispersion relations for the first three wave modes, calculated for b = 20.29 mm, 
h = 21.5 mm, y = 72 mN/m. 

and the remaining terms are positive. It may be seen that if u2 < (100/11)P2, as will 
now be assumed, the number expressed within the braces in (45) is positive, and there- 
fore the minimum Of G(U,)/F(UR) is achieved by a positive value of R. A lower bound 
for the sum of the remaining terms may accordingly be found by use of (34), and the 
result is 

The required lower bound for F(uR) is the sum of the right-hand side of (35), (44), 
(45) and (46), being a quadratic form in R. The results of minimizing the quotient of 
G(u,) and this bound, so estimating w2,, will be presented numerically in figure 4. 

3. Experiments 
The theory presented in $ 2  has shown that for a given positive wavenumber 

a (=  2n/h, where h is wavelength), there exists an infinite sequence of wave modes 
fk ( k  = 1 , 2, . . .) whose frequencies form an ascending sequence 0 < wl(a)  < w 2 ( a )  Q . . . . 
The situation is illustrated in figure 3, which highlights that the first mode alone has 
the property wl(a) + 0 as a+ 0. For k > 1 , the wk(u) have positive limits as a+ 0. In 
the experiments, travelling waves of the class in question were generated by a vibrating 
bar at one end of a uniform channel, so that frequency w rather than a was the para- 
meter under control. The modes capable of being thus excited as travelling waves are 
indicated in figure 3 by the intersections of a line w = constant with the curves 
w = w,(u); and since the wave-maker was mounted symmetrically across the channel, 
only the modes k = 1,3,5, ... are relevant. 
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These considerations establish an important point of interpretation regarding the 
experimental measurements. For the three channels used, which are detailed in $3.1 
below, the estimate (40) of the cut-off frequency 03(0) gives respectively (a )  67.9 ms, 
( b )  30.6 ms and (c) 10.4 ms for the critical period T, = 2n/w3(0).  These values are 
smaller than values of the wave period in the experiments, and it can therefore be 
concluded that only the first mode was excited. 

3.1. Apparatus 

Common difficulties have to be met in conducting experiments with liquids whose 
surface tension is required to be constant and to be accurately known. In  particular, 
there is a need to moderate the reduction in surface tension and the dilatational 
elasticity of the surface that arise from the presence of even minute quantities of 
surface-active substances. Water and mercury, for example, are both particularly 
convenient in that the properties of the pure liquid are well established, but both are 
highly prone to contamination by common organic materials. Water was used in the 
present experiments, having the advantage that it is easier to clean and, when prepared 
in plenty, can be thrown away on becoming contaminated. The water to be used was 
distilled twice: first, to remove inorganic salts, by a continuously running, all Pyrex/ 
silica, 3 kW still; second, in 8 1 batches, by an all Pyrex, 10 1 closed system. The purity 
of the water was tested by observing air bubbles entrained by shaking: samples 
allowing bubbles to persist for as long as 0.5 s at the surface were rejected. 

The need to avoid contamination also restricts the choice of solid materials for 
apparatus. Good materials in this respect include PTFE (polytetrafluoroethylene, or 
Teflon), Pyrex glass and stainless steel, which can be efficiently cleaned both by 
scrubbing and with strong chromic acid. These are otherwise inexpedient for experi- 
ments such as ours, however, and we decided to use Perspex, a comparatively inexpen- 
sive and easily workable material. Although Perspex cannot be treated with chromic 
acid or other powerful cleansing agents, many previous experiments had shown that it 
can be well cleaned by gentle scrubbing with detergent and then thorough rinsing 
with the clean water whose preparation is described above. 

Two methods were used to construct narrow channels as required for the experi- 
ments. First, they were assembled from long strips of Perspex, but the necessary use of 
solvent cement was seen to produce residual stresses liable to put the finished channel 
out of true. The second and finally preferred method was to  mill the channels out of a 
solid block of Perspex. 

Each channel was fitted with a beach a t  one end to absorb the wave energy. The 
beaches were all made from a single, wide block of Perspex milled to the required 
profile. The flat part of the beach, 400 mm long, had a slope about 2 yo, and joined 
smoothly to a short curved section about 60 mm long with a radius of curvature of 80 
mm. No reflexion was observable from the beaches in any of the channels over the 
range of wavelengths covered in these experiments. As water has a finite contact 
angle on Perspex, the water surface would normally form a significant meniscus, 
sufficient to give a measurable reflexion, on such a gently sloping beach. This effect was 
avoided by terminating the beach against a vertical wall, such that the depth of water 
at the wall was about 0.5 mm. A glass rod was used to draw the water up the beach to 
this wall, at which the water would then stay fixed. The depth profile on the beach was 
thereafter very efficient for wave damping. The channels all had 1 m of working length 
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between the wave generator and the start of the beach. Three channels were used in the 
experiments reported here: (a) width b = 20.3 mm, depth h = 21.5 mm; ( b )  b = 10.6 
mm, h = 20-0 mm; (c )  b = 4.0 mm, h = 25.0 mm. 

The wave generator in each channel was a bar of PTFE of rectangular section, cut to 
a loose fit spanning one end of the channel. One end of each bar was tapped to take a 
2 BA bolt, which fixed it to a small electrodynamic vibrator (Ling-Altec). Each bar 
executed nearly horizontal oscillations along the channel, the vibrator being driven 
through a power amplifier from an electronic oscillator with continuously variable 
frequency. 

3.2. Setting up 
Each channel was arranged horizontally on a levelling table, and the levelling was done 
with the channel full of water. The free surface was required to be everywhere horizon- 
tal, touching the top edges of the channel, and this condition could easily be judged by 
observing reflexions of fluorescent light fittings on the laboratory ceiling. When the 
surface was exactly flat, the reflected image showed no distortion, and by suitable 
positioning of the light source and observer it could be arranged that the passage of a 
wave along the channel caused an oscillation of the reflected image such that a dis- 
tortion in one direction was followed a half-period later by an identical distortion in 
the opposite direction. The channels were levelled by successively checking the con- 
dition of flatness of the surface a t  both ends of the working section. This was found to 
be a more sensitive test than the use of a spirit level. 

Once set up, the apparatus was thoroughly cleaned by use of a soft sponge and 
detergent, being then rinsed with a jet of hot tap water before a final rinse with the 
clean distilled water. The channel and the prepared water were allowed to reach room 
temperature before filling, which was done with a series of Pyrex-glass pipettes 
cleaned by chromic acid. Between experimental runs, the water was changed by 
sucking out the existing charge with a clean glass capillary connected to a jet pump. 

3.3. Measurements 

The wave period was measured by means of an electronic timer which averaged over 
10 cycles. Expected precision was better than 0.5%. Waves in the channel were 
monitored by means of a capacitance-probe system (Wayne-Kerr), which responded 
to changes in the capacitance between the sensing area of the probe, fixed horizontally, 
and the heaving water surface a t  a small distance beneath. Due to the comparatively 
small widths of the channels and to the varying spanwise curvature of the surface 
during passage of the waves, precise measurements of wave amplitude could not be 
made by this means. By visual observation, however, it  was confirmed that the peak- 
to-peak displacement amplitude a t  the channel centre was always less than 1 mm, 
usually much less. 

To measure the wavelength of a progressive wave train a t  fixed frequency, the probe 
was moved gradually along the channel and the phase of the probe output was com- 
pared with that of the oscillator driving the wavemaker. Horizontal position of the 
probe being measured from a brass metre scale, to within 0-5 mm, the wavelength 
was found as an integral fraction of the distance between stations of phase coincidence, 
which were located by observing Lissajous figures formed on an oscilloscope from the 
two signals. In  each case, the two most carefully measured stations of phase coinci- 
dence were separated by as many (counted) wavelengths as possible. Precision better 
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FIGURE 4. Comparison of theoretical curves and experimental points for the three channels : 
(a) 6 = 20.3 mm, h = 21.5 mm; ( t )  6 = 10.6 mm, h = 20.0 mm; and (c) b = 4.0 mm, 
h = 25.0 mm. ..., theoretical curve for long-crested deep-water waves; --- , theoretical 
curve for long-crested shallow-water waves, equation ( lo) ,  for h = 20.0 mm. All results 
assume y = 72-0 mN/m. 

than 1 yo was estimated for all the measurements of wavelength to be reported 
here. 

Because of the small widths of the channels, the surface tension of the water could 
not be measured in situ. The expedient adopted for all three, channels was to assume 
that, by repeated removal by suction and replenishment of the water, any residual 
contamination would be reduced to insignificance, so that measurements of surface 
tension made (on the supply of clean water) immediately after refilling would tend 
eventually to represent a clean surface in the channel. At the end of each experimental 
run, earlier measurements of wave properties were repeated in order to establish that 
the surface tension had not changed significantly during the run. 

3.4. Experimental results 

For the three channels (a) ,  ( b )  and ( c )  whose widths and depths are specified in 5 3.1, 
measured values of wavelength and period are presented in figure 4. The figure also 
shows theoretical curves, for the respective b and h, according to the second-order 
Rayleigh-Ritz estimate explained in § 2.5 D. For comparison, two further theoretical 
curves are included according to the well-known formula (10) with m = 0 (i.e. for 
long-crested waves free from edge constraints). A satisfactory agreement is apparent 
between the measurements and the present theoretical predictions, while their dis- 
parity with the properties of long-crested waves is plainly demmstrated. 

Respective to the two wider channels (a )  and ( b ) ,  the final estimate of wl(a) in 
9 2.5 D was found to be significantly closer to experiment than the simpler estimates 
presented as the inequalities (36) and (42) in $5 2.5A and C .  Since i t  may be of interest 
to compare these estimates as successive improvements in the method of approximate 
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a (mm-l) "1 

Equation (36) Equation (42) R-R Experimental 

0.02 10.72 10.59 10.48 10.28 
0.04 19.81 19.60 19.42 19.06 
0.06 26.89 26.69 26.46 26.09 
0.08 32.47 32.39 32-05 31.53 
0.10 37.12 37.32 36.73 36.19 

TABLE 1 .  Calculated and experimental values of ol(a) for channel (a): b = 20.29 mm, h = 21.50 
mm. The fourth column gives values according to the Rayleigh-Ritz estimate explained in 
32.5 D.  

solution, some calculated values of w l ( a )  respective to channel (a) are given in table 1, 
which includes interpolated or extrapolated experimental values. For the narrowest 
channel (c ) ,  the estimate (42) was found to be within 2 yo in excess of the experimental 
values, being close to, but not bettered by, the second-order estimate. 

As shown by figure 4 and by the last two columns of table 1, the difference between 
theory and experiment is quite small but has a definite trend. It appears that the waves 
in practice were slightly slower than predicted. This discrepancy is in the direction such 
that it may be accountable to the residual error in the approximation to w l ( u ) ,  which 
the complete theory shows to be inevitably an overestimate; and presumably the 
discrepancy would be reduced by closer approximations to the exact theoretical value 
of w l ( a )  specified by (32). Other possible explanations for the small discrepancy can be 
recognized, however, and in view of these we have considered it hardly warranted to 
complete the somewhat formidable task of taking the Rayleigh-Ritz method of 
approximation to further stages. One of the possibilities in view is that boundary 
layers in the channels reduced the effective depths. Another is that residual contami- 
nation reduced the surface tension of the water. Although the stringent procedures 
described in $0 3.1 and 3.2 were consistently followed, so that purity of the water in 
the experiments was fairly well assured, it was not possible to measure its surface 
tension in situ and therefore some uncertainty about this factor must remain. 

4. Conclusion 
We have described a class of water waves whose properties, unlike those of the more 

familiar, long-crested waves observable in comparatively wide channels, depend 
principally on surface tension and the span of the channel in which the waves propa- 
gate. Attention has been focused on a model situation, the brimful rectangular channel, 
where the condition supposed to hold at each edge of the free surface plainly accords 
with the experimental facts. Returning to a point discussed in 0 1, however, we may 
additionally claim for this condition that it is often the relevant one even in the 
absence of a sharp corner to locate the contact line. Thus, particularly on a clean solid 
surface, contact-angle hysteresis is often sufficient to immobilize the contact line 
against the action of waves whose amplitude is fairly small. Although it appears that 
until now little note has been made of capillary phenomena determined in this manner, 
they are not uncommon in water-wave experiments, being noticeable in channels with 
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widths as much as 100 mm or more -that is, considerably wider than channels such as 
used by us, in which the influence of the edge constraints is predominant. By dealing 
in depth with the model situation, for which the theory can be taken to particularly 
straightforward and good estimates of measurable properties, this investigation at 
least opens the record of a promising variety of water-wave phenomena. Evidently 
much remains to be done. For example, the three variants of the present problem that 
are reviewed theoretically in appendix B are open to numerical and experimental 
study. 

We gratefully acknowledge support given by the Natural Environment Research 
Council to the programme of research, on surface-tension effects, of which this investi- 
gation has been part. We are also indebted to Mr J. K. Bartington and Mr J. E. Davis, 
Technical Assistants in the Fluid Mechanics Research Institute, for expert help in the 
design and construction of the apparatus. 

Appendix A. Simplicity of the first eigenvalue 
We reconsider the eigenvalue problem in the form (27), rewriting the equation as 

hlfl = Vfl,  (A 1) 

where the operator v = [(g+ya2)1-yD2]-10B (A 2) 

has been seen to possess the same general properties as a introduced above (24). In 
particular, %' is completely continuous I? + bl. A further property to be used here is 
that V maps the cone 

K = { v ~ b l :  v 2 o (a.e) on LO, 11) 

into itself. The cone K is reproducing (generating) : that is, every element of 8l can be 
represented in the form v = v+ - v-, where v+, v- E K.  [For the argument needed to 
verify this fact, see Stampacchia (1963).] 

It was recognized in $2.4 that the first eigensolution fi is non-negative, being thus an 
element of K .  A concomitant fact now to be demonstrated is that the eigenvalue A, is 
simple. This means that f l  is the unique non-zero solution of the equations 

(%?-hh,I)"f= 0 (n = 1,2,  ...). 

The positivity of %? with respect to the cone K is implied by properties of the two 
operators from which %?is composed according to (A 2). It was proved a t  the end of 
4 2.3 that Bv is a non-negative element of DO if v E K .  The second operator, which is 
completely continuous ao-tbl, evidently takes any such element of a0 into an 
element of K ,  for it can be represented as an integral operator whose kernel is positive 
on 10, b[ x ] 0, b[.  Specifically, we have 

[(g + 7"') 1 - ~D']- 'V(X)  = (A 3) 

in which 
sinhKx . sinhK(b - s) 

K sinh Kb 
k(x,s) = if O < x < s ,  
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2 sinh 4 m .  sinh &(b - x) 
It is found that , 

JObk(5,8)dS = cosh 4 K b  

which function belonging to K will be denoted by uo. We shall show that %‘ is uo- 
positive (cf. Krasnosel’skii 1964, chap. 2), by which we mean that, for every non-zero 
v E K ,  positive numbers u and 7 can be found such that 

UU, < Vu < 7uo. (A 4) 

Here the symbol < connotes ordering with respect to the cone K ,  but it will also be 
used in other senses that are obvious from their context. 

To establish that V is u,-bounded from above, the standard inequality 

ess supw < 2+j/[v11, 
may be coupled with the fact that B(1) = po [cf. (13)]. It follows at once from (A 2) 
and (A 3) that 7 in (A 4) can be assigned the value p011v1],/2*y. 

To verify the u,-boundedness of V from below, consider any particular non-zero 
V E K ,  thus v 2 0 (a.e.) on [0, b] and v + 0. Since w is equivalent to a continuous 
function, v is then positive on a sub-interval [x,, x2]  of [0, b] with x2 > xl. But, according 
to the conclusion stated in the final paragraph of $2.3, B v  is positive where v is positive. 
Hence a number e > 0 can be found such that Bv(x) 2 e V x E [xl, x 2 ] ,  and we also know 
from the end of $ 2.3 that B v ( x )  > 0 V x E [0, b].  Dealing separately with the three, 
possibly distinct cases 0 < x < x,, x1 < x < x2 and x2 < x < b, a straightforward 
calculation shows that, V x E [0, b], 

1: k(x, s) ds 2 uo(x) . $cosech2 (&d) . ~ ~ ( x ~  - 2,) min {(xl + xz), (2b - x1 - x,)}. (A 5 )  

It now follows from (A 2 )  and (A 3) that CT in (A 4) can be assigned the value e/y times 
the positive coefficient of uo(x) on the right-hand side of (A 5 ) .  

Having confirmed that V is a u,-positive operator with respect to the reproducing 
cone K ,  we can apply a series of theorems proved in chapter 2 of Krasnosel’skii’s 
monograph (1964). The conclusions thus available are as follows. 

First (theorem 2-10): the eigenvalue A, is simple. 
Second (theorem 2.11): the normalized eigensolution f, is unique in K .  [This fact is 

otherwise evident from the condition of orthogonality between f, and another eigen- 
solution f k  corresponding to a different eigenvalue, thus ( f,, Bfk), = 0. This condition 
plainly cannot be satisfied if f k  is another non-zero element of K . ]  

Third (theorem 2.13): A, is greater than any other eigenvalue. [This fact has other- 
wise been demonstrated in $2.4.1 

Fourth (theorem 2.5): existence of an eigensolutionf,E K is implied by the proper- 
ties that %‘: K-+ K is completely continuous, that %uo > uuo (u > 0) according to 
(A 4), and that -uo$ K .  

With allowance for all admissible values of the parameters g,  y, b, h and a2, nothing 
that is comparably definite can be said about the possibility that eigenvalues other than 
A, are simple. We may reasonably presume, however, that typically all the eigenvalues 
are simple. 

Note finally that the left-hand part of (A 4) showsf, to be positive on 10, b [ .  
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FIGURE 5. Cross-section of arbitrarily shaped channel. 

Appendix B. Generalizations of theory 
An advantage of the problem treated in 5 2 is that an explicit representation of the 

operator B is available, clarifying its role and enabling eigenvalues to be estimated 
simply. The theory required to establish the existence of eigensolutions is not depend- 
ent on this feature, however, and may be extended readily to other physically interest- 
ing problems of the type exemplified most straightforwardly by the original problem. 
Here the treatment of three such problems will be outlined. 

B 1. Chnne l  of arbitrary cross-section 

Suppose that, as illustrated in figure 5 ,  the submerged part of the boundary of the cross- 
sectional domain Q in the 5,  y plane is a piecewise smooth curve rl, with Q locally on 
one side of rl, and as before the undisturbed free boundary r2 is the horizontal straight 
line between (0,O) and (b ,  0) .  The equation of the perturbed free surface being again 
assumed to have the form (1) subject to (2), the linearized hydrodynamic problem 
leads as before to 

and @(x, y) is now specified as the solution of the Neumann problem 

(B 1)  ( g + y a 2 ) f - y f ”  = w 2 @ ( ~ , O )  = w2Bf, 

If weak eigensolutions f E B ~  are again defined as in the context of (20), the only 
change is the generalized specification of the Neumann problem (B 2) which deter- 
mines the operator B in (B 1). For any given Q, the weak solution @ E Hl( l2 )  is defined 
uniquely by (1 7 ) ,  provided, as was noted below (1 7 ) ,  that f is a distribution belonging 
to H-*(O,b). Since fi1 c N-*(O,b), the definition (17) thus serves for the present 
application, establishing that 

Bf = @(x, 0) E HJ(0 ,  b )  c ao. 
From this attribution of Bf, the existence theory may proceed exactly as in 5 2.4. 

duced in (21) and thereafter shown to be weakly continuous in &, is equivalent to 
It is noteworthy that the quadratic functional F(u)  = (u, Bu),, which was intro- 
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FIGURE 6. Undisturbed states of channels respectively underfilled and overfilled 
relative to the contact lines. 

B 2. Curved free surface 
We suppose that, while the edges of the free surface are again fixed in the horizontal 
lines (x, y) = (0 ,O) and (b ,  0 ) ,  the undisturbed surface r2 is not flat (figure 6 ) .  Let its 
equation be y = [(x) with [ ( O )  = [ (b)  = 0. Then [ is respectively negative or positive 
on 10, b[ accordingly as the channel is less than brimful or is overfilled. The curvature 
of rZ is [ I / (  1 + ['2)3, and according to the hydrostatic law of pressure the equation of 
equilibrium is therefore 

- g[ = constant, Y6" 
(1 + !YE)* 

(B 3) 

where the constant has to be chosen so that the solution of (B 3) satisfying the edge 
conditions complies with the given filling of the channel. It is not easy to solve (B 3) 
explicitly, but the ideas in question may be illustrated very simply by supposing that 
16'1 < 1 everywhere and accordingly using the linearized approximation to the curva- 
ure. In  place of (B 3) we then have 

6" - K Z [  = constant, K~ = g/y,  

and the constant can be chosen to provide the solution 

where cm = [(Qb) is the largest displacement from the horizontal plane y = 0. 
Let 8 denote the angle between the tangent to rZ and the horizontal: thus 

tan8 = ['(x), 

where [(x) is the appropriate solution of (B 3), and in general 0 < 1/31 < in. If the 
equation of the perturbed free surface is 

y = 6 ( 4  +%@, 2, t )  (B 4) 

and 4 is the velocity potential, the linearized kinematical condition at the surface is 

~ , C O S ~  = a$/an, 
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’t 

FIGURE 7. Arbitrarily shaped basin filled to  the horizontal plane y = 0. 

where the normal derivative is evaluated on rZ, that is, on y = C(x).  Hence, supposing 
7 to have the form specified in (1) and taking the appropriate form of qi as before, we 
obtain in place of (B 2) 

(B 5 )  

2@/an = cosOf(x) on rZ. 

QZZ + Qvy - az@ = 0 

2@/2n = 0 on r1, 
in 

Correspondingly, we write Bf = @(x, c(x)).  
The curvature of the perturbed free surface is 

V % ) Z  + (mJ, 
where Y is the right-hand side of (B 4) and T = (1 + Y: + YE)*. Hence, introducing the 
specified form of 7 into this expression and proceeding as in the derivation of (7), the 
linearized dynamical condition at the free surface is found to give 

(9 + ?a2 cos O)f -  y C O S ~  Of” = d B f .  (B 6 )  

An existence theory for (B 6 )  may be completed on the lines already demonstrated. 
The gist of the abstract argument is unaffected by the presence of the positive functions 
cos O and C O S ~ O  weighting the terms of (B 6 )  and the boundary condition in (B 5 ). For 
a given a2, the gravest frequency is seen to be given by 

where 

Both P(u) and G(u) are positive unless u is null. 
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B 3. Standing waves in brimful closed basin 
As illustrated in figure 7, the incompressible liquid fills a three-dimensional domain D, 
the submerged part S, of whose boundary is rigid. At rest, the free surface S, of the 
liquid is horizontal in the plane y = 0. We consider standing waves for which the 
equation of the perturbed free surface is 

y = seiwtf(z,z), 

f = O  on C = S , n S , ,  

we impose the edge condition 

and mass conservation evidently requires that 

S s , f d x d z  = 0. 

Writing the velocity potential in the form 

q5 = iuseiWt$(x, y, z) ,  

we have 

where the last is required by the linearized kinematical condition a t  the free surface. 
Finally, the linearized dynamical condition a t  the free surface gives 

the right-hand side of which corresponds, by virtue of (B 9), to a linear transformation 
off, say w2Qf. 

Solutions f are required to satisfy (B 7)  and (B 8). Accordingly, they may be con- 
sidered to belong to an appropriate subspace of the Sobolev space @l,2(S2), the ele- 
ments of which have L2 generalized derivatives on S, and vanish (weakly) on the 
boundary X of S,. The subspace, say 2, is defined by the condition (B 8). Hence it 
appears that the frequency of the gravest wave mode is given by 

where 

and M ( v )  = IE2 v Qv dx dz. 

Note that N4 is an equivalent norm for %‘, so that N is a coercive, weakly lower- 
semicontinuous functional over X .  An explicit representation of M is 

which shows that M ( v )  > 0 unless v is null. It can be shown also that M is weakly 
continuous over X ,  and therefore the minimum (B 11) is achieved. 
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An interesting physical aspect is covered by allowing g to be negative. The theory 
then bears on the stability of the plane free surface of liquid in an inverted basin. 
Stability to infinitesimal disturbances is assured if all normal modes have real fre- 
quencies, and the limit of stability occurs when @ = 0. Thus, according to (B ll),  the 
plane free surface subject to the edge constraint (B 7) is stable or unstable accordingly 
as g > -go or g < -go, where 

9, = min ( IS2 ( v i  + v3) d x  d z / /  v2 dx d z )  . 
Y w..e Sa 

The method of Steiner symmetrization (P6lya & Szego 1951) establishes that, for a 
given area of S,, the minimum (B 12) is least when the boundary Z is circular. In  this 
case, the minimum is easily shown to be (jl,l/R)z, where R is the radius of C and 
j ,  = 3,8317 is the first positive zero of the Bessel function Jl. In  terms of polar co- 
ordinates ( r ,  0) in the plane y = 0, the respective mode of displacement (i.e. the mini- 
mizing function in %) is 

Thus, considering the equilibrium of liquid in a brimful inverted vessel, where the 
plane horizontal free surface beneath is fixed around a circular edge, we may conclude 
that the equilibrium is stable to small disturbances if R < R, = j,,l(y/g)* = 10.4 mm 
for water with y = 72 mN/ni. If R exceeds R,, the equilibrium is unstable and small 
displacements of the free surface in the mode (B 13) will grow exponentially with 
time. In the case that the edge of the free surface is other than circular, the condition 
of stability becomes A < A,, where A is surface area and the critical value A, is larger 
than nRZ. 

fl = Jl(jl.1 r /R )  (30s 8. (B 13) 
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